Characterizations of Complex Finsler Metrics
نویسندگان
چکیده
Munteanu (Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publishers, Dordrecht, 2004) defined the canonical connection associated to a strongly pseudoconvex complex Finsler manifold (M, F). We first prove that holomorphic sectional curvature tensors of coincide with those Chern–Finsler F if only is Kähler-Finsler metric. also investigate relationship Ricci curvatures (resp. scalar curvatures) these two connections when M compact. As an application, characterizations balanced metrics are given. Next, we obtain sufficient necessary condition for metric be Kähler-Finsler. Finally, conformal transformations
منابع مشابه
Projective complex Finsler metrics
In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...
متن کاملBeil metrics in complex Finsler geometry
In this paper we continue the study of the complex Beil metrics, in complex Finsler geometry, [18]. Primarily, we determine the main geometric objects corresponding to these metrics, e.g. the Chern-Finsler complex non-linear connection, the Chern-Finsler complex linear connection and the holomorphic curvature. We focus our study on the cases when a complex Finsler space, endowed with a complex ...
متن کاملGeneralized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملOn C3-Like Finsler Metrics
In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.
متن کاملHolomorphic Curvature of Finsler Metrics and Complex Geodesics
If D is a bounded convex domain in C , then the work of Lempert [L] and Royden-Wong [RW] (see also [A]) show that given any point p ∈ D and any non-zero tangent vector v ∈ C at p, there exists a holomorphic map φ:U → D from the unit disk U ⊂ C into D passing through p and tangent to v in p which is an isometry with respect to the hyperbolic distance of U and the Kobayashi distance of D. Further...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2023
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-023-01272-3